Следят за глазами. Как киевляне зарабатывают на нейронауке
Скорее всего, прежде чем начать читать эти строки, вы проскроллили весь текст. Оценили объем, разбивку по разделам и картинки. Возможно, даже прочли пару подзаголовков и часть текста из середины. На секунду-две остановились на фото с тепловыми картами. И только потом вернулись сюда.
То, как мы воспринимаем визуальный контент, давно стало предметом любопытства для ученых. Можно ответить вульгарно: “Вот тут красный цвет маячит, здесь текст лучше разбит, а в видео есть резкий переход”. Но глубинные открытия рождаются на стыке нейронауки и технологий.
Журналист Liga.Tech побывал в украинской компании Beehiveor Academy and R&D Labs. Попробовал на себе систему ай-трекинга и выяснил, как обычное отслеживание движений глаз может избавить студентов от тестов и научить людей понимать искусство.
Из науки в бизнес
Beehiveor основали киевские ученые-нейрофизиологи Сергей Данилов и Виктор Комаренко. Вдвоем они сначала учились, а затем 20 лет преподавали физиологию человека, биологию поведения, эволюционную психологию и нейронауки в КНУ им. Шевченко. С 2015 года занялись научпопом: начали вести лекции, вебинары и корпоративные обучения по использованию наук в практических целях, в том числе по нейромаркетингу.
Конъюнктура и архаизм системы образования в конце концов утомили коллег. В 2017 году они занялись исследованиями по нейромаркетингу и запустили небольшую R&D-лабораторию. Над собственными разработками ученые думали еще с 2008 года.
"Меня тогда познакомили с одним инвестбанкиром. Сказали, что он очень крутой, потому что читает 1000 страниц инвестиционной информации в неделю. Но как это можно было понять?" - вспоминает Сергей Данилов.
Он задумался о том, как получить объективное подтверждение того, что кто-то что-то читал. Потом это стало идеей сервиса STORYLOOK.
Чтобы понять, за что именно цепляется наш взор, применяется окулография или eye-tracking - отслеживание движений глаз. Камера с инфракрасным датчиком наблюдает, как вы скользите взглядом по словам, картинке или видео, и рисует тепловую карту. Исследователи делают вывод о паттернах движения глаз. Это помогает больше узнать о работе мозга.
Свою выгоду в этом уже давно разглядели маркетологи. Можно показать группе людей сайт, приложение, видеорекламу, постер и т.п. Потом проанализировать их тепловые карты и понять, что именно стоит поправить в дизайне, картинке, текстах. Но возможности ай-трекинга гораздо шире.
По словам основателей Beehiveor, большая часть вложений в компанию - это их личные инвестиции и доходы от других направлений деятельности. На R&D в месяц уходит порядка $5000, всего в разработки вложено уже $90 000.
1 сентября 2018 года Данилов и Комаренко ушли из университета и полностью сосредоточились на развитии компании.
Как можно заработать на нейронауках
Сейчас в команде 14 человек, из них половина разработчиков. R&D деньги традиционно вытягивает. Но именно здесь основатели видят большую перспективу: подаются с разработками в программы финансирования. К примеру, ждут результата от Horizon 2020.
Деньги же пока приносят другие два направления. Одно из них - Академия. Это лекции и корпоративные ивенты по нейронаукам, которые помогают “держать штаны”. По словам основателей, они приносят до 100 000 грн в месяц.
Более финансово привлекательным выглядит консалтинг - коммерческие исследования по нейромаркетингу. Сергей Данилов говорит, что за апрель зашло несколько проектов от украинских компаний и стартапов. Средний чек доходит до $3000-4000 за исследование.
Опыты на глазах и мозге
Типичный коммерческий эксперимент Beehiveor выглядит так. Испытуемый изучает некий визуальный продукт: сайт компании, постер, мобильное приложение и т.п. Для отслеживания объективных реакций используется ай-трекинг. При необходимости к нему добавляют электроэнцефалограмму.
После этого испытуемый рассказывает, в каких частях продукта испытывал трудности. Например, где плохо читался текст, какие элементы интерфейса мешали, какие картинки не понравились.
Субъективные впечатления респондентов сравниваются с объективными реакциями мозга, анализируются. Это делается специально. По словам Алексея Шпенкова, ведущего эксперта Beehiveor, респондент может что-то не запомнить, о каких-то проблемах с восприятием постесняется сказать. Но глаза и мозг их зафиксируют. И это проблема именно подачи продукта или проектирования интерфейса.
В итоге компания дает рекомендации по улучшению продукта.
Заказчики у компании самые разные. То торговая сеть просила проанализировать внешний вид обычного ценника. То интернет-магазин интересовался путем покупателя от стартовой страницы до заказа доставки. Из свежих проектов - комикс, в котором испытуемые читали баблы с текстом совсем в другом порядке, чем задумывали авторы.
Из интересных наблюдений: оказывается активность мозга по сценарию и видеоролику практически одинакова. Иногда уже по трекингу чтения сценария можно предсказать реакцию на видеоряд.
По словам Сергея Данилова, любой эксперимент начинается с обработки литературы. Второй шаг - гипотезы, которые согласовываются с заказчиком. Лишь после этого начинаются проверки. Средняя выборка - от 30 человек.
“Проблема в том, что многие делают халтуру, пытаясь показать что-то по результатам исследования на 4-5 респондентах. И при этом пытаются что-то гарантировать. Мы же честно говорим: эксперимент на то и эксперимент, в нем заранее неизвестен результат. Но заказчик может получить важные инсайты”, - объясняет основатель Beehiveor.
Конкуренты, работающие в этой нише - CoolTool, RealEye. Сергей Данилов ждет, что однажды кто-то займет нишу нейромаркетинга полностью. Свою же компанию он хочет посвятить анализу данных и разработке поведенческих алгоритмов.
Опыт на глазах журналиста Liga.Tech
Главное детище R&D-лаборатории Beehiveor - сервис STORYLOOK, который проверяет, как читают тексты. По утверждению разработчиков, система с точностью до 97% может предсказать, читал ли человек текст или отдельные его части.
В этом продукте компания пробует вместо навороченных ай-трекеров использовать обычные веб-камеры. Тем более, что они год от года становятся все качественнее. Программа через вебку распознает зрачок, калибрует взгляды по монитору и составляет тепловую карту. Так ай-трекинг хотят сделать широко доступным.
Журналист Liga.Tech попробовал инструмент на себе. Сначала система попросила побегать глазами за зеленым кружком на белом и черном фоне - для калибровки распознавания. Потом сотрудник Beehiveor запустил документ со статьей о черных дырах. С этого момента начался трекинг.
Читалось тяжеловато. К тому же рядом разговаривали другие люди. Журналист честно ходил глазами по строкам, по нескольку раз перечитывал одни и те же абзацы. И даже пробовал обмануть систему.
Но отчет STORYLOOK был неумолим. Текст, мол, просмотрен весь, но прочитано всего 30%.
“Мы пробовали сервис на разных задачах: прочесть текст, посмотреть картинку, видео, а также найти информацию в тексте. В каждом случае паттерны движения глаз совсем разные. Вы просто смотрели на текст, как на картинку, и система это определила”, - объясняет Виктор Комаренко.
Учись, смотри, любуйся, как эксперт
Как говорят основатели Beehiveor, приложить StoryLook можно ко многим кейсам. Правда, нужно повышать точность веб-трекинга.
Например, сервис может освободить преподавателей от необходимости проверять, читал ли студент учебный материал. А если читал, то где спотыкался и как лучше переделать текст? Для этого достаточно будет посмотреть на отчет от STORYLOOK, через кототрый читали студенты. И вместо ненужных тестирований переходить к практическим заданиям.
Но стоп. Разве прочтение материала = его усвояемость?
Оказывается, по результатам ай-трекинга можно сделать неплохой прогноз качества работы с материалом, говорит, Сергей Данилов. “Это более объективно, чем оценка преподавателя, которому студент просто может нравиться или не нравиться”, - отмечает он.
Аналогично компании могут узнать, читал и усвоил ли новый сотрудник входной инструктаж. Другая возможность - проверить уровень кандидата. К примеру, юристу дают поработать с электронным документом. Его трекинг чтения можно сравнить с тем, как это делает заранее протестированный профессионал.
В одном из проектов Beehiveor сотрудничает с Национальным художественным музеем. Зимой там проходила выставка икон, и исследователи решили выяснить, как посетители смотрят на картины. Идея в том, сравнить, как на предметы искусства смотрят обыватели и ценители.
“Икона - очень символическая штука. А человек пришел, глянул на стандартный треугольник глаза-нос - и пошел дальше, ничего не поняв. Через этот проект мы можем научить людей замечать детали в искусстве. А с другой стороны - учим экскурсоводов нормально “отдавать данные” посетителям”, - рассказывает Сергей Данилов.
Об одном - уже социальном - проекте предприниматель упоминает чаще всего. Под него нужно отдельное финансирование и усиленная технологическая база. Идея - первичная диагностика аутизма у детей перед тем, как вести их к врачу. Здесь компания сотрудничает с партнером - Odry_VR.
“Если ребенок нормотипичный, его взгляд распределяется по привычным нам шаблонам. Аутичный ребенок смотрит иначе”, - говорит Сергей Данилов.
Зная это, можно создать ребенку комфортные условия, снизить тревожность. Чтобы он мог нормально развиваться в тех рамках, которые ему позволяет природа.
Когда немые говорят, а компьютер предугадывает мысли
Журналист не удержался и спросил Сергея Данилова о будущем нейротехнологий. Светит ли нам управление интерфейсами с помощью мозга? Можно ли переместить сознание человека в вечный цифровой рай?
В цифровую душу предприниматель не верит. А управлять интерфейсами с помощью мысли - реально. Но чтобы научиться это делать, в мозгу нужно построить совершенно новые связи. Взамен у нас есть рука, которая для этого приспособлена получше.
Другое дело, когда вопрос касается паралича или управления протезами. Например, снимая сигналы с височной и лобной коры мозга парализованного человека, уже давно можно увидеть, о чем он думает. И даже переводить это в текст - с точностью около 80%.
Также дикими темпами развиваются генетические и инженерные “апгрейды”. Например, в позапрошлом году были эксперименты по усилению памяти с помощью протеза в гиппокамп. Фактически объем оперативной памяти - это уровень интеллекта. Но это пока точечные эксперименты на пациентах, которым для жизнедеятельности нужно было подключать электроды к мозгу. Массовые опыты ограничиваются этикой.
Ученый верит, что в недалеком будущем компьютер превратится из “печатной машинки” в систему полноценного взаимодействия. Замечая с помощью ай-трекинга, куда и как смотрит человек, компьютер сможет предсказывать наши намерения, и реагировать на них. Как уже сейчас наше цифровое поведение анализируют Facebook, Google и другие платформы.
Правда, захочет ли человек, чтобы машина превратилась из пассивного исполнителя в активного наблюдателя? Здесь нам еще предстоит решить целую пропасть этических вопросов. Как минимум - отказаться от заклеивания глазка веб-камеры.